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Abstract: Accurate fault location algorithm minimizes the fault 
searching time and operating cost. This paper proposes an accurate 
fault algorithm for untranposed multi-phase AC/DC hybrid line 
corridors in time domain. The proposed method considers the 
distributed line parameter and applies the eigenvalue decomposition 
to decouple the system. The Bergeron model is applied to solve the 
voltage distribution through the line to achieve the fault location. 
Numerical experiments in a five-phase AC/DC system with only 5 ms 
data window prove that the proposed method presents higher fault 
location accuracy compared to fault location results without 
considering the mutual coupling effects between AC and DC systems, 
independent of fault types, locations and impedances. 

Key words: fault location, AC/DC hybrid line corridor, eigenvalue 
decomposition, Bergeron model 

I. INTRODUCTION 
CCURATE fault location algorithm for transmission lines 
reduces the time spent searching for the fault and saves the 

operating cost for power systems [1-4]. With the increasing 
demand for the electric power, the transmission line corridors 
are widely applied. The transmission line corridors are 
constructed with the parallel lines on the same tower that allow 
the power transmission of high voltage classes, and with the 
parallel lines on nearby towers based on the economic and 
environmental concern. For example, the two-circuit parallel 
lines (with number of phase conductors greater than three) may 
include: two three-phase AC lines in parallel (AC/AC), two 
double-pole DC lines in parallel (DC/DC), and one three-phase 
AC line paralleled with one double-pole DC line (AC/DC). To 
achieve accurate fault location in the line corridors, the 
techniques of modal decomposition that decouple the high 
dimensional system into several independent single-mode 
transmission lines are typically applied. In recent literatures, 
the techniques of modal decomposition mostly depend on 
certain assumptions of the phase number and the structure of 
the line parameter matrix, which treat the AC/AC, DC/DC and 
AC/DC lines differently. 

For the transmission line corridors constructed with two AC 
lines in parallel, various fault location algorithms have been 
proposed [5-9]. Phasor domain methods are firstly proposed for 
these problems. A one-terminal impedance method is proposed 
with assumption of transposed lines in [5]. A multi-terminal 
method with the lumped parameter line model is proposed in 
[6]. With the improvement of the modeling accuracy of 
transmission lines, a two-terminal method considering the 
distributed parameters with six-dimensional sequence 
decomposition is proposed in [7]. In addition, a method uses the 
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eigenvalue decomposition to decouple untransposed lines is 
proposed in [8]. With short available data window, time domain 
methods are also proposed. Literature [9] proposes a method 
that applies a certain constant transform matrix to decouple the 
six-dimensional system into two three-dimensional systems. 
For each three-dimensional system, the Clarke transformation 
with the assumption of transposed line and the Bergeron model 
are utilized to achieve the fault location. 

With the construction of the first actual parallel DC 
transmission line corridor in practice, the behavior of the 
electric field for such system is studied in [10] but not the fault 
location. In [11], the fault location method for such system is 
proposed, which applies a constant decomposition matrix as 
well as the eigenvalue decomposition method to decouple the 
transposed and untransposed four-phase (four-pole) 
transmission lines, respectively. The Bergeron model is applied 
to achieve the fault location. Traveling wave based methods are 
also applied for fault location in parallel DC line corridors [12, 
13]. Both literatures adopt the same constant matrix in [11] to 
decouple the system, and then use the traveling wave methods 
for fault location. 

The AC line and DC line in parallel result in five-phase 
(three phases and two poles) transmission line corridor or even 
higher dimensional system (eg. each line consists of parallel 
circuits on the same tower). Researchers broadly study the 
behavior of such systems [14-17]. Literature [14] gives a real 
life example of the AC line and DC line run in parallel. 
Literatures [14, 15] study the behavior of the five-phase system 
through calculation of the electromagnetic field and conclude 
that the variational voltage in AC line could influence the 
electromagnetic behavior in DC line especially during system 
transients. Literature [16] studies the influence of the DC line 
on the AC line by considering the DC bias and second harmonic 
components on the AC side with the method of circuit theory. 
Literature [17] studies the secondary arc current on AC side 
when the faults occur inside DC line, with an approximately 
adjusted modal decomposition to cover both transposed and 
untransposed lines, in phasor domain. However, few literatures 
about fault location for such system are found. 

This paper proposes a fault location algorithm for 
multi-phase untransposed transmission line corridors with 
distributed parameter modeling in time domain. For 
untransposed lines in practice, the eigenvalue decomposition 
can be directly applied for modal decomposition. Therefore, the 
method does not have certain assumptions of the structure of 
line parameter matrices or certain phase numbers. Therefore, 
the proposed algorithm is suitable for various types of corridors. 
The time domain voltage method based fault location, which 
claims the location of the fault corresponds to the extremum of 
the voltage distribution on a transmission line during faults, is 
applied to locate faults. The Bergeron model [9] is adopted to 
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solve the voltage distribution through decoupled single-mode 
transmission lines. Simulation results of fault location with a 
specific 200 km five-phase AC/DC untransposed transmission 
line corridor demonstrate that the proposed method achieves 
higher fault location accuracy compared to the method that 
neglects the mutual coupling effect between AC and DC 
circuits, with various fault types, locations and impedances, in 
5 ms time window. 

The rest of the paper is organized as follows. Section II 
derives the method to calculate the voltage distribution. Section 
III shows the fault location algorithm using the voltage method. 
Section IV exhibits the numerical experiments on the proposed 
fault location approach. Section V draws a conclusion. 

II. SOLUTION OF VOLTAGE DISTRIBUTION FOR MULTI-PHASE 
TRANSMISSION LINES 

Multi-phase untransposed transmission line corridors with 
distributed line parameters can always be described with the 
following M-phase transmission line model in time domain, as 
shown in Figure 1. k and m are two terminals of the 
transmission line. The total length of the line is l, and a section 
of infinitesimal length dx at location x is considered. Matrices 
R, L, G and C are the series resistance matrix, series inductance 
matrix, shunt conductance matrix and shunt capacitance matrix 
per unit length, respectively. The phase voltages  ,pju x t  and 
phase currents    , 1, 2, ...,pji x t j M  are defined in the figure. 

upM(x,t) upM(x+dx,t)
ipM(x,t)

M M

dx
l

x

up2(x,t) up2(x+dx,t)
ip2(x,t) ip2(x+dx,t)

2 2

up1(x,t) up1(x+dx,t)
ip1(x,t) ip1(x+dx,t)

1 1

m

ipM(x+dx,t)

k

Matrix R Matrix L Matrix G Matrix C

 
Figure. 1. The M-phase transmission line model 

From the Kirchhoff’s Current Laws (KCLs) and Kirchhoff’s 
Voltage Laws (KVLs), the following partial differential 
equation set holds, 

     

     

, , ,

, , ,
p p p

p p p

x t x x t t x t

x t x x t t x t

      

      

u L i Ri 0

i C u Gu 0
              (1) 

where 0 is the M-dimensional zero vector, 
     

T

1, , ,p p pMx t u x t u x t   u  and      
T

1, , ,p p pMx t i x t i x t   i . 
The solution of the voltage distribution through the entire 

transmission line, which is required for voltage method fault 
location, is equivalent to the solution of  ,p x tu  or the solution 
of (1). The solution of (1) typically requires the decoupling of 
(1) into M decoupled equation sets. Afterwards, the Bergeron 
model can be applied to solve the decoupled equation sets. 
Therefore, the solution of the voltage distribution of M-phase 
transmission line corridor includes two steps: step 1 decouples 
the system into M independent single-mode transmission lines; 
step 2 uses the Bergeron model to solve the voltage distribution 
for M decoupled single-phase transmission lines. 

A. Modal Decomposition with Eigenvalue Decomposition 
For the untransposed line with arbitrary number of the phases 

and arbitrary structure of the parameter matrices, the first and 
second equation in (1) cannot be decoupled using same 

constant eigenmatrix such as the Clarke decomposition. The 
essence is that matrices L and C cannot be diagonalized with 
same eigenmatrix. For transmission lines with any phase 
number and parameter matrix, the only knowledge of L and C is 
that these matrices are symmetrical matrices (the off-diagonal 
element ijL  equals to jiL ). With this knowledge, the method of 
modal decomposition using eigenvalue decomposition can be 
applied [18]. The basic idea of this method is reviewed and its 
effectiveness for M-phase transmission line corridor is proved. 

For symmetric matrices L and C, apply the eigenvalue 
decomposition to the matrix LC, 

1
u u LC
 T LCT Λ                               (2) 

where uT  is the eigenmatrix and LCΛ  is the diagonal matrix 
with the eigenvalues of LC as the diagonal elements. 

Define  1 T

i u
T T . Take the transposition of (2) with the 

property of symmetry, 
1

i i LC
 T CLT Λ                                 (3) 

Consider the matrix T
L i iΛ T LT , one have, 

1

1

T T
u u i i i i LC L

T T
i i i i i i L LC





 

 

T LCT T LT T LCLT Λ Λ
T LTT CLT T LCLT Λ Λ

                 (4) 

Equation (4) claims that LC L L LCΛ Λ Λ Λ . The element form of 
this equation is, 

1 11 1 12 1 1 11 1 12 2 1

2 21 2 22 2 2 21 1 22 2 2

1 2 1 1 2 2

LC L LC L LC L M L LC L LC L M LCM

LC L LC L LC L M L LC L LC L M LCM

LCM LM LCM LM LCM LMM LM LC LM LC LMM LCM

           

           

           

   
   

   
   
      

(5) 

To achieve the equivalence in (5), it requires that 
  0Lij LCi LCj     for all i j . For matrix LC with M different 

eigenvalues, all off-diagonal elements Lij  of matrix LΛ  equal 
to zero, which claims that matrix LΛ  is a diagonal matrix. 
Similarly, matrix C can be diagonalized as T

C u uΛ T CT . 
Note that, here the eigenvalues for matrix LC should be 

different. For a transposed line, this assumption is not satisfied 
and the counter-example that the matrix LΛ  is not diagonal 
matrix can be easily found. However, for untransposed line in 
practice, this assumption is always satisfied [18]. 

Introduce matrices uT  and iT  into (1), 
1 1 1 1 1

1 1 1 1 1

u p u i i p u i i p

i p i u u p i u u p

x t

x t

    

    

      

      

T u T LTT i T RTT i 0

T i T CT T u T GT T u 0
        (6) 

Define the mode voltage vector as 1
m u p

u T u  and mode 
current vector as 1

m i p
i T i , ignore the off-diagonal elements of 

matrices 1
u i
T RT  as RΛ  and 1

i u
T GT  as GΛ  (since effects of 

those values are relatively small). The transmission line 
equation is decoupled into M independent equation sets as, 

     

     

, , ,

, , ,
m L m R m

m C m G m

x t x x t t x t

x t x x t t x t

      

      

u Λ i Λ i 0

i Λ u Λ u 0
          (7) 

B. Solution of Voltage Distribution with Bergeron Model 
For the nth mode decoupled single-mode line, that is nth 

equation in (7) ( 1, 2, ,n M  for the rest of the paper), 
     

     

, , , 0

, , , 0
n n n n n

n n n n n

u x t x L i x t t R i x t

i x t x C u x t t G u x t

      

      
           (8) 
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where nu  and ni  are the nth elements in vectors mu  and mi ; nL , 
nR , nC  and nG  are nth diagonal elements in matrices LΛ , RΛ , 
CΛ  and GΛ , respectively. 
The Bergeron model describes the relationship between the 

voltages and currents at terminals of a transmission line with 
certain length l [19]. It first ignores the terms with nR  and nG  
in (8) to find the analytical solution for a lossless transmission 
line. Afterwards, the effect of resistance is considered by 
adding lumped resistors at the terminals and the mid-point of 
the line. The conductance is typically ignored. With the 
analytical solution of the lossless line and the consideration of 
lumped resistors, the Bergeron model gives the solution of (8), 

       

       

       

       

1 1 2 1

1 2 1

1 1 2 1

1 2 1

kn n kn n n mn n

n mn n n n kn n n kn n

mn n mn n n kn n

n kn n n n mn n n mn n

i t Z u t h Z u t

h i t h Z u t h i t

i t Z u t h Z u t

h i t h Z u t h i t



  



  

       

             

       

             

   (9) 

where  kni t ,  knu t ,  mni t  and  mnu t  denote the currents and 
voltages at terminals of transmission line as    0,kn ni t i t , 

   ,mn ni t i l t  ,    0,kn nu t u t  and    ,mn nu t u l t . n n nl L C  , 

4n n n nZ L C lR  ,    4 4n n n n n n nh L C lR L C lR   . 
In purpose of solving the voltage distribution through the 

entire transmission line, express the voltage at one terminal of 
the line with the voltage and current at another terminal, 

       

         

     

2

2 2

22

2 1 1

1 1 2 1 1

2 1 1

mn n n n kn n kn n

n n kn n n n n kn

n n n n kn n n kn n

u t Z h Z u t i t

h h u t h h h Z i t

h h Z Z u t h i t

 

 

         

       

          

   (10) 

Afterwards, vary the length of calculated transmission line 
in the range of  0, l , the voltage distribution through the entire 
line is calculated from the voltage and current at one terminal. 

III. FAULT LOCATION ALGORITHM 
This section gives the fault location algorithm with 

calculated voltage distribution using (10). With equation (10), 
two voltage distribution curves can be calculated in each mode, 
one using the measurements at terminal k and another using the 
measurements at terminal m. Here the mode considered for 
fault location algorithm is denoted as mode f In the 
transformation matrix, the summation of the elements in the 
row corresponding to this mode should be close to zero. In this 
case, this mode has the physical meaning of the “line mode”, 
which can minimize the influence of earth return and achieve 
high accuracy of fault location. On the other hand, the 
five-phase transmission line or even higher dimensional system 
could have more than one “line mode”. In this paper, the mode f 
is selected according to the following criterion. For line to 
ground faults, choose the line mode where the faulted phase has 
the greatest contribution in the corresponding row. For line to 
line faults, choose the line mode where the coefficients for two 
phases are the closest to opposite numbers in the corresponding 
row. 

For the chosen mode f, the intersection point of two 
calculated voltage distribution curves shows the fault location. 
To further improve the accuracy of the fault location, the 
summation of the voltage distribution curve at each time step is 
introduced for the fault location algorithm [5]. The x that 

minimizes following function gives the fault location, 

   
2

1

, ,
t

k m
f f

t t
u x t u x t



                         (11) 

where  ,k
fu x t  and  ,m

fu x t  are the mode f voltage 
distributions calculated with measurements at terminals k and 
m respectively, interval  1 2,t t  is the summation window. 

Here with the available measurement data window of 0, ft  , 
the voltage distribution calculated through entire line is only 
between interval ,l f lt     with (10). So the summation 

window is ,l f lt    . 

IV. NUMERICAL EXPERIMENTS 
In this section, a five-phase transmission line corridor, which 

includes a two-phase DC transmission line and a three-phase 
AC transmission line, is considered to verify the effectiveness 
of the proposed method. Beside the proposed fault location 
algorithm, the following two existing fault location methods are 
also considered to show the importance of modeling the 
integrated coupled transmission line corridor instead of 
modeling the two circuits (AC and DC circuit) independently 
and neglecting the effect of mutual coupling. Both existing 
methods use the Bergeron model to calculate the voltage 
distribution and to achieve voltage method fault location. 
However, one existing method only considers the DC line into 
the system and uses the eigenvalue decomposition to decouple 
the two dimensional system, the other one existing method only 
considers the AC line into the system and uses the eigenvalue 
decomposition to decouple the three dimensional system. 

The example test system is shown in Figure 2(a). The 
transmission line is simulated using frequency dependent 
(phase) model in PSCAD/EMTDC. The tower structures for 
both DC line and AC line are shown in Figure 2 (b) (phases 1, 2 
and 3, 4, 5 represent negative pole, positive pole of the DC line, 
and phases A, B, C of the AC line, respectively). The lengths of 
both DC line and AC line are 200 km. The 320  kV DC line is 
connected to the converter stations modular multilevel 
converter (MMC) 1 and MMC 2. The 230 kV AC line is 
directly connected to the AC sources. The five-phase 
instantaneous measurements of voltages and currents are 
installed at both terminals. The sampling rate is 100 
kilo-samples per second. The data window is 5 ms. 

Eight groups of fault events are considered: phase 2 to 3 
faults, phases 2 and 3 to ground faults, phase 2 to ground low 
impedance and high impedance faults, phase 1 to 2 faults, phase 
3 to ground low impedance and high impedance faults, and 
phase 4 to 5 faults. Each group of events are simulated with 
different fault impedances and fault locations. After applying 
the eigenvalue decomposition, the inverse of voltage 
eigenmatrix and the summation of each row are, 

1

 0.6463    0.4627   -0.1562   -0.3893   -0.4398
-0.4129   -0.4055   -0.4727   -0.4572   -0.4833
 0.2252   -0.0594   -0.6279   -0.2107    0.7132
 0.6032   -0.7653    0.2189    0.0055   -0.0594
-0.1128

u
 T  1

 0.1237
-2.2317

sum  0.0403
 0.0030

    0.0192    0.5350   -0.7731    0.3233 -0.0084

u


   
   
   
   
   
   
   
   

T， . 

One can observe that modes 4 and 5 are line modes. Choose the 
mode according to the criterion mentioned in section III. The 
specific mode chosen for fault location with each fault type is 
shown in Table 1. 
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Figure. 2. Test system, (a) five-phase transmission line corridor 
and (b) tower structure of the system 

Table. 1. Chosen mode for fault location with each fault type 

Phase 2 to 3 faults
Phases 2 and 3 to ground faults

Phase 2 to ground faults
Phase 1 to 2 faults

Chosen mode

Phase 3 to ground faults
Phase 4 to 5 faults

Mode 5
Mode 5
Mode 4
Mode 5
Mode 5
Mode 4

Fault type

 
Figure 3 shows the absolute fault location errors with 

different fault types and different methods. Black line shows 
the results with the proposed method that considers a 5-phase 
model, red line shows the results that only consider a 2-phase 
model of the DC line, blue line shows the results that only 
consider a 3-phase model of the AC line. Here the method with 
only the AC line fails in locating faults occurring only in DC 
lines; the method with only DC line fails in locating faults 
occurring only in AC lines. Therefore, such results are not 
demonstrated in the following figures. 

Group A: Phase 2 to 3 faults 
Phases 2 to 3 faults are faults between DC line and AC line. 

The fault location results with three methods are shown in 
Figure 3 (a). The average and maximum absolute errors of the 
method with 5-phase model with 0.01, 1 and 2 ohm fault 
impedances are 0.12%, 0.13%, 0.15%, and 0.25%, 0.35%, 
0.45%, respectively. The average and maximum absolute errors 
of the method with 2-phase model with 0.01, 1 and 2 ohm fault 
impedances are 0.45%, 0.45%, 0.45%, and 1.85%, 1.85%, 
1.90%, respectively. The average and maximum absolute errors 
of the method with 3-phase model with 0.01, 1 and 2 ohm fault 
impedances are 0.38%, 0.36%, 0.35%, and 1.40%, 1.25%, 
1.20%, respectively. 

Group B: Phases 2 and 3 to ground faults 
Phases 2 and 3 to ground faults are also faults between DC 

line and AC line. The fault location results with three methods 
are shown in Figure 3 (b). The average and maximum absolute 
errors of the method with 5-phase model with 0.01, 1 and 2 ohm 
fault impedances are 0.05%, 0.05%, 0.05%, and 0.10%, 0.10%, 
0.10%, respectively. The average and maximum absolute errors 
of the method with 2-phase model with 0.01, 1 and 2 ohm fault 
impedances are 0.24%, 0.25%, 0.25%, and 1.10%, 1.15%, 
1.15%, respectively. The average and maximum absolute errors 
of the method with 3-phase model with 0.01, 1 and 2 ohm fault 
impedances are 0.16%, 0.17%, 0.18%, and 0.40%, 0.40%, 
0.40%, respectively. 

Group C: Phase 2 to ground lowimpedance faults 
Besides the faults between DC line and AC line, the faults in 

each single circuit are also studied. Phase 2 to ground faults are 
single pole to ground faults in DC line. The fault location 
results with two methods are shown in Figure 3 (c). The 
average and maximum absolute errors of the method with 
5-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.10%, 0.14%, 0.16%, and 0.20%, 0.35%, 0.65%, respectively. 
The average and maximum absolute errors of the method with 
2-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.32%, 0.31%, 0.30%, and 1.60%, 1.60%, 1.60%, respectively. 

Group D: Phase 2 to ground high impedance faults 
The fault location results for Phase 2 to ground high fault 

impedance faults with two methods are shown in Figure 3 (d). 
The average and maximum absolute errors of the method with 
5-phase model with 10, 100 and 200 ohm fault impedances are 
0.16%, 0.64%, 0.49%, and 0.70%, 1.60%, 1.90%, respectively. 

(e) Phase 1 to 2 faults (f) Phase 3 to ground low fault impedance faults (g) Phase 4 to ground high fault impedance faults (h) Phase 4 to 5 faults

(a) Phase 2 to 3 faults (b) Phases 2 and 3 to ground faults (c) Phase 2 to ground low fault impedance faults (d) Phase 2 to ground high fault impedance faults

5-phase model
2-phase model
3-phase model

 
Figure. 3. Absolute fault location errors with different fault types and different methods 
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The average and maximum absolute errors of the method with 
2-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.34%, 0.96%, 0.65%, and 1.60%, 2.20%, 2.10%, respectively. 

Group E: Phase 1 to 2 faults 
Phase 1 to 2 faults are pole to pole faults in DC line. The fault 

location results with two methods are shown in Figure 3 (e). 
The average and maximum absolute errors of the method with 
5-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.05%, 0.05%, 0.05%, and 0.10%, 0.10%, 0.10%, respectively. 
The average and maximum absolute errors of the method with 
2-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.15%, 0.15%, 0.15%, and 0.35%, 0.35%, 0.35%, respectively. 

Group F: Phase 3 to ground low impedance faults 
For the faults only in AC line, phase 3 to ground faults are 

single phase to ground faults in AC line. The fault location 
results with two methods are shown in Figure 3 (f). The average 
and maximum absolute errors of the method with 5-phase 
model with 0.01, 1 and 2 ohm fault impedances are 0.01%, 
0.01%, 0.01%, and 0.05%, 0.05%, 0.05%, respectively. The 
average and maximum absolute errors of the method with 
3-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.04%, 0.03%, 0.03%, and 0.05%, 0.05%, 0.05%, respectively. 

Group G: Phase 4 to ground high impedance faults 
The fault location results for Phase 3 to ground high fault 

impedance faults with two methods are shown in Figure 3 (g). 
The average and maximum absolute errors of the method with 
5-phase model with 10, 100 and 200 ohm fault impedances are 
0.02%, 0.07%, 0.12%, and 0.05%, 0.15%, 0.30%, respectively. 
The average and maximum absolute errors of the method with 
3-phase model with 0.01, 1 and 2 ohm fault impedances are 
0.03%, 0.10%, 0.17%, and 0.05%, 0.20%, 0.35%, respectively. 

Group H: Phase 4 to 5 faults 
Phase 4 to 5 faults are phase to phase faults in AC line. The 

fault location results with two methods are shown in Figure 3 
(h). The average and maximum absolute errors of the method 
with 5-phase model with 0.01, 1 and 2 ohm fault impedances 
are 0.10%, 0.10%, 0.09%, and 0.25%, 0.25%, 0.25%, 
respectively. The average and maximum absolute errors of the 
method with 3-phase model with 0.01, 1 and 2 ohm fault 
impedances are 0.19%, 0.19%, 0.18%, and 0.35%, 0.35%, 
0.30%, respectively.  

For each type of fault, the proposed method shows higher 
fault location accuracy compare to the two existing methods 
that neglect the mutual coupling effect between AC and DC 
lines. Therefore, the modeling of the integrated coupled 
transmission line corridors does consider the mutual influence 
of lines in parallel in fault location application. However for the 
proposed method, there are still some errors. This is probably 
because the frequency dependency of the line parameters is not 
considered in the modeling procedure of the proposed method. 

V. CONCLUSION 
This paper proposes a time domain fault location algorithm 

for untransposed multi-phase transmission line corridors with 
distributed parameter model. The eigenvalue decomposition is 
applied to decouple the multi-phase system and the Bergeron 
model is applied to solve the voltage distribution and to 
determine the fault location. The specific application of the 
proposed method for a five-phase AC/DC line corridor shows 
higher fault location accuracy compared to fault location results 

without considering the mutual coupling effect between AC 
and DC systems, with only 5 ms data window. Nevertheless, 
although the proposed method is only suitable for untransposed 
lines, the partially transposed transmission lines in practice are 
actually constructed with several sections of untransposed lines 
that result in a nonhomogeneous untransposed line. The fault 
location for nonhomogeneous lines as well as the consideration 
of the frequency dependent parameters will be included in 
future publications. 
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