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Abstract—The distribution system always contains GPS-

synchronized data and non-synchronized data. The application 

of both types of data in state estimation increases redundancy of 

the measurements and accuracy of the estimated states. Using 

both GPS-synchronized and non-synchronized data, this paper 

introduces object-oriented distributed quasi-dynamic state 

estimation (DQDSE), that is, substation-level quasi-dynamic 

state estimation (QSE) that tracks slow dynamics (e.g., 

electromechanical transients) while neglecting fast 

electromagnetic transients. DQDSE offers an efficient and 

practical way of performing state estimation for subsystems with 

phasor measurement units and other meters. It also transmits 

generated results to the control center for system automation 

and control. The advantages of DQDSE follow: (1) It uses a 

highly accurate system model, (2) it deals with unbalanced 

operating conditions, and (3) it uses local measurements to 

reduce state estimation computation time. The demonstrative 

example verifies the effectiveness of DQDSE. 

Index Terms—distributed quasi-dynamic state estimation, 

GPS synchronization, non-synchronized data, object-oriented 

I. INTRODUCTION 

The 1960s witnessed the introduction and the application 

of state estimation in power systems [1]-[2]. Taking place in a 

control center, conventional centralized state estimation, 

which involves the collection of redundant measurement data 

from the power system, may be accomplished by a number of 

methods, one of which is the weighted least square (WLS) 

method [3]-[4].  This method computes an optimal solution 

by minimizing the sum of the squares of measurement errors. 

By introducing a Lagrangian operator, the constraint WLS 

method is also applied in state estimation [5]. Mili et al. [6] 

introduced other similar state estimation methods such as 

least median of squares (LMS) and least trimmed squares 

(LTS). Another popular method applied in state estimation is 

the extended Kalman filtering method, which consists of two 

steps: (1) prediction: predicting states, updating covariance 

matrix and Kalman gain, and (2) correction: correcting the 

states. Other estimation methods, including the artificial 

neural network were also recently investigated [8]. 

As the power system is growing larger and more 

complicated, the application of conventional state estimation 

methods has encountered several challenges:   

(1) To guarantee reasonable execution rates, the state 

estimator employs simplified system models. For example, 

the positive-sequence network, which implies a balanced and 

symmetric system, is typically used. Because of this practice, 

conventional state estimation is not suitable for unbalanced or 

asymmetric three-phase power systems. Therefore, traditional 

state estimators are biased estimators.  

(2) All data are processed in the control center (centralized 

state estimator), which results in a long response time.  

The problems listed above are currently being addressed by 

new emerging approaches. Meliopoulos et al. [9] and Džafić 

et al. [10] introduced and applied the three-phase model 

instead of the positive-sequence model. The conventional 

state estimation bias was also discussed and quantified [11]. 

GPS-synchronized measurement enables new approaches 

to power system state estimation [9]. One of the approaches is 

that GPS-synchronized measurements enable the transition 

from a centralized state estimator to distributed quasi-

dynamic state estimators (DQDSE). DQDSE, a combination 

of previous work in [12]-[13], is the substation level quasi-

dynamic state estimation (QSE), which uses phasor 

measurements. QSE incorporates electromechanical 

transients (e.g., slow dynamic change caused by machine 

inertia) while neglecting fast electromagnetic transients. 

Compared to conventional static state estimation, DQDSE 

has the following advantages: (1) With the adoption of three-

phase detailed models, DQDSE processes unbalanced 

systems and outputs reliable and accurate results; (2) as 

shown in Fig. 1, the entire system can be divided into several 

overlapping sections, each containing at least one GPS-

synchronized intelligent electronic device (IED). The 

estimated states from DQDSE are GPS-synchronized and 

transmitted to the control center for further use. Such a 

procedure accelerates the speed of state estimation and 
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dramatically reduces data traffic between the local section 

and the control center [14]. 

Section i Section j

Overlapping Area

State Estimation for 

Section i

State Estimation for 

Section j  
Figure 1. Partitioned Sections in DQDSE 

 

Since DQDSE employs a large number of devices, creating 

the system dynamic model without some kind of 

standardization and associated algorithms is extremely 

difficult, which calls for a standard model syntax and an 

object-oriented state estimation procedure. This paper 

introduces an object-oriented approach to performing 

DQDSE based on three-phase detailed models and a 

combination of GPS- and non-synchronized data. Section II 

provides a general description of three-phase detailed device 

models, the derivation of measurement models, and the 

resulting state estimation algorithm. Section III presents 

results with an example system. 

II. DISTRIBUTED QUASI-DYNAMIC STATE ESTIMATION WITH 

BOTH SYNCHRONIZED AND NON-SYNCHRONIZED DATA 

DQDSE consists of models, measurements, and an 

objected-oriented state estimation method. A detailed three-

phase dynamic device model lays the foundation for accurate 

state estimation output. Therefore, in this section, we will 

first introduce a general syntax: state algebraic quadratic 

companion form (SAQCF) for the device model. Next, from 

the device model, we will derive the measurement model 

syntax. Finally, this section will provide the dynamic state 

estimation algorithm. 

A. SAQCF Device model 

To derive the SAQCF device model, we begin by 

expressing all devices in the system in (1) and quadratize 

nonlinear terms on an order higher than two by introducing 

additional variables. 
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eqx eqx eq

I(x)
= Y x + x F x - B

0
, and         (1) 

   eq eqx eqB = N x(t - h) + N i(t - h) + b ,         (2) 

where I(x)  is the terminal current vector of the device model, 

x  is the state variable vector of the device model, x(t -h)  is 

the past-time state variable vector of the device model, eqxY  

is the linear coefficient matrix, i

eqx
F  is the nonlinear 

(quadratic) coefficient matrix, eqB  is the history-dependent 

vector, eqxN is the linear coefficient matrix of the past-time 

state variable vector, 
eqN  is the linear coefficient matrix of 

the past-time terminal current variable vector, and b  is the 

constant vector. Details of the SAQCF model can be found in 

[13]. Note that the phasors are divided into real and 

imaginary parts in the SAQCF syntax and that all the 

elements in the matrices are real values. An example of a 

device model expressed in the SAQCF syntax appears in 

Appendix A.  

B. SAQCF Measurement Model 

If the collected data are synchronized, the state estimator 

directly formulates the measurement equations in the SAQCF 

syntax. For instance, synchronized voltage measurement 

equations are a linear combination of all state variables: 

            
V_Syn V_Syn abcnZ = Y x + η, and                     (3) 
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x  and η is the measurement 

error. We obtain synchronized current measurement 

equations from the device model. For instance, the current 

measurement of the jth terminal of a device is 

    

 
 

  
 
 

j T i

I_Syn I_Syn I_Syn I_SynZ = Y x x F x - B + η,         (4) 

where x  is the corresponding device state vector shown in 

(1), j

I_Syn
Y  is the linear coefficient matrix consisting of rows 

corresponding to jth terminal obtained from eqxY  in (1), 

i

I_Syn
F  is the nonlinear coefficient matrix corresponding to jth 

terminal obtained from i

eqx
F  in (1), and I_SynB  is the 

measurement history-dependent vector. However, if any 

measurement is collected from relays without the GPS 

synchronization functionality, an angle difference between 

the reference phase angle of this non-synchronized relay and 

the synchronized reference phase angle may exist. This 

difference is referred to as the “synchronous angle 

difference,” which is added to the measurement equation as a 

new variable,  . In this case, (3) and (4) are modified as 

follows: 

              cos sinj 
V_UnSyn V_Syn abcn

Z = Y x - + η, and        (5) 

 cos sinj 

  
  

   
  
  

j T i

I_Syn I_Syn I_Syn I_SynZ = Y x x F x - B - + η.(6) 

To suit the SAQCF syntax, the measurement equations above 

need to be quadratized, so cos cosx    and sin sinx    are 



two new states and linear coefficient matrices 
V_SynY  and 

I_SynY  become nonlinear coefficient matrices. In addition, as 

two new states obey mathematical rules, we add one more 

equation in the measurement model, shown in (7): 

     2 2
cos sin0 1x x    .          (7) 

The measurements above, collected from IEDs, are actual 

measurements. With the purpose of increasing redundancy 

and improving state estimation performance, we define two 

other measurement types: (1) virtual measurements and (2) 

pseudo-measurements. Virtual measurements are those that 

obey physical or mathematical laws of the system, such as 

Kirchhoff’s current law (KCL). Specifically, internal 

equations in all device models are virtual measurements. 

Furthermore, according to KCL, the sum of all currents from 

various devices connected to one common node is zero, 

which, in addition to (7), is also a virtual measurement shown 

in Fig. 2. Pseudo-measurements are those with known 

expected values. For instance, the voltage of the neutral phase 

is close to zero in a normal operation, that is, a pseudo- 

measurement. 
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Figure 2. Illustration of Virtual Measurements 

 

By combining all the measurement types mentioned above, 

the state estimator is able to generate the measurement model 

of the entire system, expressed in a similar syntax as the 

device model syntax: 

  h

 
 

  
 
 

T i

eqz eqz eqzz = Y x + x F x - B + η x η,          (8) 

where z is the measurement vector of the system, eqzY  is the 

linear coefficient matrix regarding state vector x , i

eqz
F  is the 

nonlinear (quadratic) coefficient matrix, eqzB  is the history-

dependent vector, and η is the measurement error. 

Meanwhile, we define the standard deviation (the 

measurement error) of each measurement before state 

estimation. Usually, we set the standard deviations of actual 

measurements as 0.01 p.u. As we know only the expected 

values of the pseudo-measurements, their standard deviations 

are set as a relatively high value (e.g., 0.1 p.u.). As virtual 

measurements obey mathematical or physical laws, relatively 

small errors are allowed and their standard deviations are low 

values (e.g., 0.001 p.u.). 

C. Dynamic State Estimation Algorithm 

We apply the weighted least square approach in the 

dynamic state estimation. The nonlinear measurement model 

is shown in (8). The nonlinear optimization problem is 

expressed as follows: 

        ( ) ( )Minimize J h h  
T

z t x W z t x ,       (9) 

where W  is the weight matrix with the weights defined as 

the inverse of the squared standard deviations: 

        2 2 2
1 2diag 1/ ,1/ , ,1/ n  W .             (10) 

Unknown state vector x  is obtained by the optimal 

condition: 

            0dJ d x .        (11) 

To obtain the solution of the nonlinear optimization problem 

above, we linearize the nonlinear equations (the highest order 

is the second order in (8)) at the point x  by assuming that an 

initial guess x  is very close to the optimal solution: 

      ( ) ( ) /h h 

    
x=x

r x x x x - x z .       (12) 

After we set ( ) /h   
x=x

H x x , and ( )h   z' x + Hx + z , 

the equation becomes 

           r = Hx - z' .        (13) 

The optimization problem is now expressed as 

       Minimize J 
T

Hx - z' W Hx - z' .           (14) 

Thus, we generalize the solution as an iterative equation: 

      h 
-1 -1

ν+1 T T T T
x = H WH H Wz' = x - H WH H W x - z .(15) 

After calculating the solution, we apply the chi-square test. 

The chi-square test provides a mathematical method of 

evaluating whether the measurements fit the system model. 

The procedure is as follows: 

First, we compute the chi-square value as 

    

2

( )i i

i i

h z




 
  

 


x
.        (16) 

Then we apply the confidence level: 

 P 1 Pr( , )   ,        (17) 

where   is the degree of freedom, which is the difference 

between the number of measurements and states. If the 

confidence level remains 100%, it turns out that the 

measurements match the system model, and if it is 0, the 

system must contain bad data or hidden failures. 

III. ILLUSTRATIVE RESULTS 

To demonstrate DQDSE, we present an example system 

consisting of one substation and interconnected circuits, 

shown in Fig. 3. Note that some of the relays in this 



substation are GPS-synchronized, and others are not. The 

substation contains a local state estimator that performs state 

estimation. This section demonstrates that the state estimator 

is able to accurately estimate the overall states of the 

substation and the states of interconnecting lines when the 

collected data contain both GPS- and non-synchronized 

measurements. We simulate measurement errors by injecting 

errors in the measurements from a Gaussian noise source. 

115kV

13.8kV 

Y

Line 1 Line 2

Line 3 Line 4 Line 5

I

V

I

V

I

I

I

I

I

V

V

V

V
I

Relay 1 
(GPS)

Relay 2 

Relay 3

Relay 4 
(GPS)

Relay 5

Relay 6

Relay 7

Section i1 Section i2

Bus 1 Bus 2

Bus 3

Bus 4

Section j1 Section j2 Section j3

Bus 5 Bus 6 Bus 7

 
Figure 3. The Example Substation and Interconnected Circuits 

 

A. System Configuration 

The example substation consists of two buses (Bus 3, 115 

kV and Bus 4, 13.8 kV) and a wye-delta transformer that 

connects them. Additionally, the substation is connected to 

two transmission systems (sections i1 and i2) and three 

distribution systems (sections j1, j2, and j3). The substation is 

protected by seven relays: Relays 1 and 4 are GPS-

synchronized while relays 2, 3, 5, 6, and 7 are not. The 

measurement sampling rate is two phasor samples per cycle. 

The states of this example system are as follows: (1) 15 

voltage phasors of phases A, B, C, N1, and N2 at Buses 1, 2, 

and 3 (the 115 kV transmission line has two neutral points); 

(2) 16 voltage phasors of phases A, B, C, and N at Buses 4, 5, 

6, and 7; (3) three internal states (voltage phasors) in the 

transformer; and (4) five synchronous angle differences for 

non-synchronized relays (relays 2, 3, 5, 6, and 7). Since each 

phasor consists of a real part and an imaginary part and each 

synchronous angle difference is represented by cosine and 

sine functions, the substation consists of 78 states in total. 

In this example system, each relay has two three-phase 

measurement channels, and each phasor measurement is 

divided into a real part and an imaginary part. As a result, the 

entire system has 84 actual measurements. As the voltage of 

the neutral phase is close to zero during a normal operation, 

the system measurement model contains 20 pseudo- 

measurements. In addition, 23 virtual measurements are 

available: (a) six represent internal equations for the 

transformer; (b) 12 obey KCL at Buses 3 and 4; and (c) the 

other five virtual measurements are the mathematical laws 

shown in (7) for each synchronous angle difference. In 

summary, the measurement vector contains 127 elements, and 

we set the standard deviation of actual, pseudo- and virtual 

measurements at 0.01 p.u., 0.1 p.u., and 0.001 p.u., 

respectively. 

B. Simulation Results 

We create two events and apply quasi-dynamic state 

estimation to this system. The duration of these two events is 

20 seconds each with load changes in the system. The results 

of the events follow. 

Event 1: Quasi-dynamic state estimation using both 

GPS- and non-synchronized measurements 

During the event, the measurements (phasors) “seen” by 

the relays in the substation have been stored in a 

COMTRADE file, and they are used to perform the DQDSE 

algorithm. The system of the DQDSE includes the substation, 

the two transmission lines, and the three distribution lines. 

The data generated by the event and by the DQDSE are very 

large, so including all the results in the paper is virtually 

impossible. Instead, we present and discuss examples of 

specific data. Figs. 4 and 5 show the voltage and the current 

actual and estimated phasor measurements in relay 4. 

 
Figure 4. Voltage Actual and Estimated Phasor Measurements in Relay 4, 

Event 1 

 

Figs. 4 and 5 indicate that the estimated measurements 

accurately track the actual measurements. In Fig. 6, 
1 ~

5  

are the estimated synchronous angle differences of non-

synchronized measurements from relays 2, 3, 5, 6 and 7, 

respectively. Note that since the voltage channels of relays 5, 

6, and 7 measure the voltage at the same node (Bus 4), the 

estimated synchronous angle differences 
3 , 

4 , and 
5  are 



the same. The confidence level remains 100% during the 

entire event. Therefore, the measurements are consistent with 

the system model. The state estimator validates the 

measurements and streams the estimated states to the control 

center for further application. 

 
Figure 5. Current Actual and Estimated Phasor Measurements in Relay 4, 

Event  

 
Figure 6. Estimated Angle Difference in Event 1 

 

Event 2: Quasi-dynamic state estimation using both 

GPS- and non-synchronized measurements with 1% 

Gaussian noise 

Applying the DQDSE algorithm to Event 2, we add a 1% 

Gaussian noise source to the measurements from relays in the 

substation and store these measurements in a COMTRADE 

file. The system of the DQDSE is the same as that of Event 1. 

We present and discuss examples of measurements and 

DQDSE-generated data. Figs. 7 and 8 illustrate the voltage 

and the current actual and estimated measurements of phase 

A in relay 4. 

Figs. 7 and 8 indicate that even with 1% Gaussian noise, 

estimated measurements can also track actual measurements. 

Fig. 9 shows the estimated synchronous angle differences of 

non-synchronized measurements from relays 2, 3, 5, 6 and 7. 

The confidence level in Fig. 9 indicates strong consistency 

between the measurements and the system model (the 

probability is always larger than 90%). The DQDSE validates 

the measurements of this event and streams the estimated 

states to the control center for further application. Fig. 10 

shows that the square roots of the variance of estimated 

measurements in relay 4 are close to 0.01 p.u., which reflects 

the addition of Gaussian noise to the measurements. 

 
Figure 7. Voltage Actual and Estimated Phasor Measurements of Phase A in 

Relay 4, Event 2 

 
Figure 8. Current Actual and Estimated Phasor Measurements of Phase A in 

Relay 4, Event 2 

 
Figure 9. Estimated Angles and Confidence Level in Event 2 



 
Figure 10. Square Root of the Variance of Voltage and Current Estimated 

Measurements in Relay 4, Event 2 

 

IV. CONCLUSIONS 

DQDSE is an efficient and effective method of performing 

state estimation for large-scale power system with various 

types of measurements. This paper presents an object-

oriented approach to performing quasi-dynamic state 

estimation with both GPS- and non-synchronized 

measurements, even when the measurements contain 1% 

Gaussian noise. The proposed approach has the following 

advantages: (1) It consists of detailed three-phase models that 

lay the foundation of reliable and accurate output; and (2) it 

applies to any distribution system with devices in the same 

syntax. 
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V. APPENDIX A 

This appendix illustrates how a model can be expressed in 

SAQCF syntax. Fig. A-1 shows the quasi-dynamic model for 

a wye-delta transformer. Note that we divide the phasor into 

real and imaginary parts in the SAQCF syntax, shown in (1), 

and all the elements in the matrices are real values. The 

corresponding matrices of the SAQCF syntax for this specific 

model are as follows: 

 
T

   A B C N a b cx i i i i i i i   I , 

 
T

     A B C N a b c AM BM CMv v v v v v v v v vABCNv , 

where eqxY  is a non-zero linear coefficient matrix, 
i
eqxF  is 

null, and 
eqxN , 

eqN  and b  are zero. 
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Figure A-1: Wye-Delta Transformer Model 

 

 

 


